< >
Home » Turtlebot入门教程 » turtlebot入门-语音控制

turtlebot入门-语音控制

PocketSphinx语音识别和turtlebot的语音控制

说明

  • 利用PocketSphinx实现语音识别
  • 利用语音命令来控制Turtlebot
  • 实现播放语音

PocketSphinx语音识别

  1. 安装PocketSphinx
$ sudo apt-get install gstreamer0.10-pocketsphinx
$ sudo apt-get install ros-indigo-pocketsphinx
$ sudo apt-get install ros-indigo-audio-common
$ sudo apt-get install libasound2
$ sudo apt-get install gstreamer0.10-gconf(有些书本没有说要安装,但经过在indigo版本测试,必须安装)
  1. 测试PocketSphinx 语音识别
  • 设置麦克风设备,系统设置->sound中input设置内置语音音量, 插入麦克风设备,在系统设置里测试麦克风是否有语音输入
    请输入图片描述

  • 启动launch文件:

$ roslaunch pocketsphinx robocup.launch
  • 尝试说一些简单的语句,当然,必须是英语,例如:bring me the glass,come with me,看看能不能识别出来

  • 直接看ROS最后发布的结果消息:

$ rostopic echo /recognizer/output
  • 效果图:
    请输入图片描述
  1. 添加语音库
  • 这个语音识别是属于离线识别,将一些常用的词汇放到一个文件中,作为识别的文本库,然后分段识别语音信号,最后在库中搜索对应的文本信息。如果想看语音识别库中有哪些文本信息,可以通过下面的指令进行查询:
$ roscd pocketsphinx/demo
$ more robocup.corpus
  • 添加语音库。 我们可以自己向语音库中添加其他的文本识别信息《ros by example》自带的例程中是带有语音识别的例程的,而且有添加语音库的例子。

  • 安装《ros by example》例子环境依赖

$cd ~
$wget https://raw.githubusercontent.com/pirobot/rbx1/indigo-devel/rbx1-prereq.sh
$sh rbx1-prereq.sh
  • 安装例子代码
$cd ~/catkin_ws/src
$git clone https://github.com/pirobot/rbx1.git
$cd rbx1
$git checkout indigo-devel
$cd ~/catkin_ws
$catkin_make
$source ~/catkin_ws/devel/setup.bash
$rospack profile
  • 首先看看例子中要添加的文本息:
$ roscd rbx1_speech/config
$ more nav_commands.txt

请输入图片描述

  • 以下是需要添加的文本,我们也可以修改其中的某些文本,改成自己需要的。然后我们要把这个文件在线生成语音信息和库文件,这一步需要登陆网站http://www.speech.cs.cmu.edu/tools/lmtool-new.html,根据网站的提示上传文件,然后在线编译生成库文件。
    请输入图片描述

  • 把下载的文件都解压放在rbx1_speech包的config文件夹下。我们可以给这些文件改个名字

$ roscd rbx1_speech/config  
$ rename -f 's/3026/nav_commands/' 
  • 在rbx1_speech/launch文件夹下看看voice_nav_commands.launch这个文件
<launch>  
<node name="recognizer" pkg="pocketsphinx" type="recognizer.py"  
output="screen">  
<param name="lm" value="$(find rbx1_speech)/config/nav_commands.lm"/>  
<param name="dict" value="$(find rbx1_speech)/config/nav_commands.dic"/>  
</node>  
</launch> 
  • 这个launch文件在运行recognizer.py节点的时候使用了我们生成的语音识别库和文件参数,这样就可以实用我们自己的语音库来进行语音识别了。通过之前的命令来测试一下效果如何吧:
$ roslaunch rbx1_speech voice_nav_commands.launch  
$ rostopic echo /recognizer/output  

语音控制turtlrbot机器人移动

  1. recognizer.py会将最后识别的文本信息通过消息发布,那么我们来编写一个机器人控制节点接收这个消息,进行相应的控制即可。在pocketsphinx包中本身有一个语音控制发布Twist消息的例程voice_cmd_vel.py,rbx1_speech包对其进行了一些简化修改,在nodes文件夹里可以查看voice_nav.py文件
#!/usr/bin/env python

"""
  voice_nav.py - Version 1.1 2013-12-20
  
  Allows controlling a mobile base using simple speech commands.
  
  Based on the voice_cmd_vel.py script by Michael Ferguson in
  the pocketsphinx ROS package.
  
  See http://www.ros.org/wiki/pocketsphinx
"""

import rospy
from geometry_msgs.msg import Twist
from std_msgs.msg import String
from math import copysign

class VoiceNav:
    def __init__(self):
        rospy.init_node('voice_nav')
        
        rospy.on_shutdown(self.cleanup)
        
        # Set a number of parameters affecting the robot's speed
        self.max_speed = rospy.get_param("~max_speed", 0.4)
        self.max_angular_speed = rospy.get_param("~max_angular_speed", 1.5)
        self.speed = rospy.get_param("~start_speed", 0.1)
        self.angular_speed = rospy.get_param("~start_angular_speed", 0.5)
        self.linear_increment = rospy.get_param("~linear_increment", 0.05)
        self.angular_increment = rospy.get_param("~angular_increment", 0.4)
        
        # We don't have to run the script very fast
        self.rate = rospy.get_param("~rate", 5)
        r = rospy.Rate(self.rate)
        
        # A flag to determine whether or not voice control is paused
        self.paused = False
        
        # Initialize the Twist message we will publish.
        self.cmd_vel = Twist()

        # Publish the Twist message to the cmd_vel topic
        self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist, queue_size=5)
        
        # Subscribe to the /recognizer/output topic to receive voice commands.
        rospy.Subscriber('/recognizer/output', String, self.speech_callback)
        
        # A mapping from keywords or phrases to commands
        self.keywords_to_command = {'stop': ['stop', 'halt', 'abort', 'kill', 'panic', 'off', 'freeze', 'shut down', 'turn off', 'help', 'help me'],
                                    'slower': ['slow down', 'slower'],
                                    'faster': ['speed up', 'faster'],
                                    'forward': ['forward', 'ahead', 'straight'],
                                    'backward': ['back', 'backward', 'back up'],
                                    'rotate left': ['rotate left'],
                                    'rotate right': ['rotate right'],
                                    'turn left': ['turn left'],
                                    'turn right': ['turn right'],
                                    'quarter': ['quarter speed'],
                                    'half': ['half speed'],
                                    'full': ['full speed'],
                                    'pause': ['pause speech'],
                                    'continue': ['continue speech']}
        
        rospy.loginfo("Ready to receive voice commands")
        
        # We have to keep publishing the cmd_vel message if we want the robot to keep moving.
        while not rospy.is_shutdown():
            self.cmd_vel_pub.publish(self.cmd_vel)
            r.sleep()                       
            
    def get_command(self, data):
        # Attempt to match the recognized word or phrase to the 
        # keywords_to_command dictionary and return the appropriate
        # command
        for (command, keywords) in self.keywords_to_command.iteritems():
            for word in keywords:
                if data.find(word) > -1:
                    return command
        
    def speech_callback(self, msg):
        # Get the motion command from the recognized phrase
        command = self.get_command(msg.data)
        
        # Log the command to the screen
        rospy.loginfo("Command: " + str(command))
        
        # If the user has asked to pause/continue voice control,
        # set the flag accordingly 
        if command == 'pause':
            self.paused = True
        elif command == 'continue':
            self.paused = False
        
        # If voice control is paused, simply return without
        # performing any action
        if self.paused:
            return       
        
        # The list of if-then statements should be fairly
        # self-explanatory
        if command == 'forward':    
            self.cmd_vel.linear.x = self.speed
            self.cmd_vel.angular.z = 0
            
        elif command == 'rotate left':
            self.cmd_vel.linear.x = 0
            self.cmd_vel.angular.z = self.angular_speed
                
        elif command == 'rotate right':  
            self.cmd_vel.linear.x = 0      
            self.cmd_vel.angular.z = -self.angular_speed
            
        elif command == 'turn left':
            if self.cmd_vel.linear.x != 0:
                self.cmd_vel.angular.z += self.angular_increment
            else:        
                self.cmd_vel.angular.z = self.angular_speed
                
        elif command == 'turn right':    
            if self.cmd_vel.linear.x != 0:
                self.cmd_vel.angular.z -= self.angular_increment
            else:        
                self.cmd_vel.angular.z = -self.angular_speed
                
        elif command == 'backward':
            self.cmd_vel.linear.x = -self.speed
            self.cmd_vel.angular.z = 0
            
        elif command == 'stop': 
            # Stop the robot!  Publish a Twist message consisting of all zeros.         
            self.cmd_vel = Twist()
        
        elif command == 'faster':
            self.speed += self.linear_increment
            self.angular_speed += self.angular_increment
            if self.cmd_vel.linear.x != 0:
                self.cmd_vel.linear.x += copysign(self.linear_increment, self.cmd_vel.linear.x)
            if self.cmd_vel.angular.z != 0:
                self.cmd_vel.angular.z += copysign(self.angular_increment, self.cmd_vel.angular.z)
            
        elif command == 'slower':
            self.speed -= self.linear_increment
            self.angular_speed -= self.angular_increment
            if self.cmd_vel.linear.x != 0:
                self.cmd_vel.linear.x -= copysign(self.linear_increment, self.cmd_vel.linear.x)
            if self.cmd_vel.angular.z != 0:
                self.cmd_vel.angular.z -= copysign(self.angular_increment, self.cmd_vel.angular.z)
                
        elif command in ['quarter', 'half', 'full']:
            if command == 'quarter':
                self.speed = copysign(self.max_speed / 4, self.speed)
        
            elif command == 'half':
                self.speed = copysign(self.max_speed / 2, self.speed)
            
            elif command == 'full':
                self.speed = copysign(self.max_speed, self.speed)
            
            if self.cmd_vel.linear.x != 0:
                self.cmd_vel.linear.x = copysign(self.speed, self.cmd_vel.linear.x)

            if self.cmd_vel.angular.z != 0:
                self.cmd_vel.angular.z = copysign(self.angular_speed, self.cmd_vel.angular.z)
                
        else:
            return

        self.cmd_vel.linear.x = min(self.max_speed, max(-self.max_speed, self.cmd_vel.linear.x))
        self.cmd_vel.angular.z = min(self.max_angular_speed, max(-self.max_angular_speed, self.cmd_vel.angular.z))

    def cleanup(self):
        # When shutting down be sure to stop the robot!
        twist = Twist()
        self.cmd_vel_pub.publish(twist)
        rospy.sleep(1)

if __name__=="__main__":
    try:
        VoiceNav()
        rospy.spin()
    except rospy.ROSInterruptException:
        rospy.loginfo("Voice navigation terminated.")
  1. 仿真测试
$ roslaunch rbx1_bringup fake_turtlebot.launch            首先是运行一个机器人模型:
$ rosrun rviz rviz -d `rospack find rbx1_nav`/sim.rviz    然后打开rviz:
$ roslaunch rbx1_speech voice_nav_commands.launch         再打开语音识别的节点:
$ roslaunch rbx1_speech turtlebot_voice_nav.launch        最后就是机器人的控制节点了:
  1. 效果图,不过语音的准确度还是有欠缺。

请输入图片描述

实现播放语音

  1. 可以通过语音控制Turtlebot, 也可以让Turtlebot实现播放相应的文字内容,运行下面的命令:
$ rosrun sound_play soundplay_node.py  
$ rosrun sound_play say.py "Greetings Humans. Take me to your leader."  
  1. ROS通过识别我们输入的文本,让机器人读了出来。发出这个声音的人叫做kal_diphone,我们也可以换一个人来读
$ sudo apt-get install festvox-don  
$ rosrun sound_play say.py "Welcome to the future" voice_don_diphone
  1. 在rbx1_speech/nodes文件夹中有一个让机器人说话的节点talkback.py
#!/usr/bin/env python  
  
""" 
    talkback.py - Version 0.1 2012-01-10 
     
    Use the sound_play client to say back what is heard by the pocketsphinx recognizer. 
     
    Created for the Pi Robot Project: http://www.pirobot.org 
    Copyright (c) 2012 Patrick Goebel.  All rights reserved. 
 
    This program is free software; you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation; either version 2 of the License, or 
    (at your option) any later version.5 
     
    This program is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details at: 
     
    http://www.gnu.org/licenses/gpl.htmlPoint 
"""  
  
import roslib; roslib.load_manifest('rbx1_speech')  
import rospy  
from std_msgs.msg import String  
from sound_play.libsoundplay import SoundClient  
import sys  
  
class TalkBack:  
    def __init__(self, script_path):  
        rospy.init_node('talkback')  
  
        rospy.on_shutdown(self.cleanup)  
          
        # Set the default TTS voice to use  
        self.voice = rospy.get_param("~voice", "voice_don_diphone")  
          
        # Set the wave file path if used  
        self.wavepath = rospy.get_param("~wavepath", script_path + "/../sounds")  
          
        # Create the sound client object  
        self.soundhandle = SoundClient()  
          
        # Wait a moment to let the client connect to the  
        # sound_play server  
        rospy.sleep(1)  
          
        # Make sure any lingering sound_play processes are stopped.  
        self.soundhandle.stopAll()  
          
        # Announce that we are ready for input  
        self.soundhandle.playWave(self.wavepath + "/R2D2a.wav")  
        rospy.sleep(1)  
        self.soundhandle.say("Ready", self.voice)  
          
        rospy.loginfo("Say one of the navigation commands...")  
  
        # Subscribe to the recognizer output and set the callback function  
        rospy.Subscriber('/recognizer/output', String, self.talkback)  
          
    def talkback(self, msg):  
        # Print the recognized words on the screen  
        rospy.loginfo(msg.data)  
          
        # Speak the recognized words in the selected voice  
        self.soundhandle.say(msg.data, self.voice)  
          
        # Uncomment to play one of the built-in sounds  
        #rospy.sleep(2)  
        #self.soundhandle.play(5)  
          
        # Uncomment to play a wave file  
        #rospy.sleep(2)  
        #self.soundhandle.playWave(self.wavepath + "/R2D2a.wav")  
  
    def cleanup(self):  
        self.soundhandle.stopAll()  
        rospy.loginfo("Shutting down talkback node...")  
  
if __name__=="__main__":  
    try:  
        TalkBack(sys.path[0])  
        rospy.spin()  
    except rospy.ROSInterruptException:  
        rospy.loginfo("Talkback node terminated.")
  1. 运行talkback.launch
$ roslaunch rbx1_speech talkback.launch 

纠错,疑问,交流: 请进入讨论区点击加入Q群

获取最新文章: 扫一扫右上角的二维码加入“创客智造”公众号


标签: turtlebot语音识别, turtlebot语音控制