编写动作服务器和客户端 (C++)

目标:使用 C++ 实现动作服务器和客户端。

教程级别:中级

时间:15 分钟

背景

动作是 ROS 中的一种异步通信形式。 *动作客户端*向*动作服务器*发送目标请求。 *动作服务器*向*动作客户端*发送目标反馈和结果。

先决条件

您将需要 custom_action_interfaces 包和 Fibonacci.action 接口,它们在上一个教程 创建操作 中定义。

任务

1 创建 custom_action_cpp 包

正如我们在 创建包 教程中看到的,我们需要创建一个新包来保存我们的 C++ 和支持代码。

1.1 创建 custom_action_cpp 包

进入您在 上一个教程 中创建的操作工作区(记得获取工作区的源代码),并为 C++ 操作服务器创建一个新包:

cd ~/ros2_ws/src
ros2 pkg create --dependencies custom_action_interfaces rclcpp rclcpp_action rclcpp_components --license Apache-2.0 -- custom_action_cpp

1.2 添加可见性控制

为了使包在 Windows 上编译和工作,我们需要添加一些“可见性控制”。 有关更多详细信息,请参阅:ref:Windows 提示和技巧文档 <Windows_Symbol_Visibility> 中的 Windows 符号可见性。

打开 custom_action_cpp/include/custom_action_cpp/visibility_control.h,并输入以下代码:

#ifndef CUSTOM_ACTION_CPP__VISIBILITY_CONTROL_H_
#define CUSTOM_ACTION_CPP__VISIBILITY_CONTROL_H_

#ifdef __cplusplus
extern "C"
{
#endif

// This logic was borrowed (then namespaced) from the examples on the gcc wiki:
//     https://gcc.gnu.org/wiki/Visibility

#if defined _WIN32 || defined __CYGWIN__
  #ifdef __GNUC__
    #define CUSTOM_ACTION_CPP_EXPORT __attribute__ ((dllexport))
    #define CUSTOM_ACTION_CPP_IMPORT __attribute__ ((dllimport))
  #else
    #define CUSTOM_ACTION_CPP_EXPORT __declspec(dllexport)
    #define CUSTOM_ACTION_CPP_IMPORT __declspec(dllimport)
  #endif
  #ifdef CUSTOM_ACTION_CPP_BUILDING_DLL
    #define CUSTOM_ACTION_CPP_PUBLIC CUSTOM_ACTION_CPP_EXPORT
  #else
    #define CUSTOM_ACTION_CPP_PUBLIC CUSTOM_ACTION_CPP_IMPORT
  #endif
  #define CUSTOM_ACTION_CPP_PUBLIC_TYPE CUSTOM_ACTION_CPP_PUBLIC
  #define CUSTOM_ACTION_CPP_LOCAL
#else
  #define CUSTOM_ACTION_CPP_EXPORT __attribute__ ((visibility("default")))
  #define CUSTOM_ACTION_CPP_IMPORT
  #if __GNUC__ >= 4
    #define CUSTOM_ACTION_CPP_PUBLIC __attribute__ ((visibility("default")))
    #define CUSTOM_ACTION_CPP_LOCAL  __attribute__ ((visibility("hidden")))
  #else
    #define CUSTOM_ACTION_CPP_PUBLIC
    #define CUSTOM_ACTION_CPP_LOCAL
  #endif
  #define CUSTOM_ACTION_CPP_PUBLIC_TYPE
#endif

#ifdef __cplusplus
}
#endif

#endif  // CUSTOM_ACTION_CPP__VISIBILITY_CONTROL_H_

2 编写动作服务器

让我们专注于编写一个动作服务器,使用我们在 创建操作 教程中创建的动作来计算斐波那契数列。

2.1 编写动作服务器代码

打开 custom_action_cpp/src/fibonacci_action_server.cpp,并输入以下代码:

#include <functional>
#include <memory>
#include <thread>

#include "custom_action_interfaces/action/fibonacci.hpp"
#include "rclcpp/rclcpp.hpp"
#include "rclcpp_action/rclcpp_action.hpp"
#include "rclcpp_components/register_node_macro.hpp"

#include "custom_action_cpp/visibility_control.h"

namespace custom_action_cpp
{
class FibonacciActionServer : public rclcpp::Node
{
public:
  using Fibonacci = custom_action_interfaces::action::Fibonacci;
  using GoalHandleFibonacci = rclcpp_action::ServerGoalHandle<Fibonacci>;

  CUSTOM_ACTION_CPP_PUBLIC
  explicit FibonacciActionServer(const rclcpp::NodeOptions & options = rclcpp::NodeOptions())
  : Node("fibonacci_action_server", options)
  {
    using namespace std::placeholders;

    auto handle_goal = [this](
      const rclcpp_action::GoalUUID & uuid,
      std::shared_ptr<const Fibonacci::Goal> goal)
    {
      RCLCPP_INFO(this->get_logger(), "Received goal request with order %d", goal->order);
      (void)uuid;
      return rclcpp_action::GoalResponse::ACCEPT_AND_EXECUTE;
    };

    auto handle_cancel = [this](
      const std::shared_ptr<GoalHandleFibonacci> goal_handle)
    {
      RCLCPP_INFO(this->get_logger(), "Received request to cancel goal");
      (void)goal_handle;
      return rclcpp_action::CancelResponse::ACCEPT;
    };

    auto handle_accepted = [this](
      const std::shared_ptr<GoalHandleFibonacci> goal_handle)
    {
      // this needs to return quickly to avoid blocking the executor,
      // so we declare a lambda function to be called inside a new thread
      auto execute_in_thread = [this, goal_handle](){return this->execute(goal_handle);};
      std::thread{execute_in_thread}.detach();
    };

    this->action_server_ = rclcpp_action::create_server<Fibonacci>(
      this,
      "fibonacci",
      handle_goal,
      handle_cancel,
      handle_accepted);
  }

private:
  rclcpp_action::Server<Fibonacci>::SharedPtr action_server_;

  void execute(const std::shared_ptr<GoalHandleFibonacci> goal_handle) {
    RCLCPP_INFO(this->get_logger(), "Executing goal");
    rclcpp::Rate loop_rate(1);
    const auto goal = goal_handle->get_goal();
    auto feedback = std::make_shared<Fibonacci::Feedback>();
    auto & sequence = feedback->partial_sequence;
    sequence.push_back(0);
    sequence.push_back(1);
    auto result = std::make_shared<Fibonacci::Result>();

    for (int i = 1; (i < goal->order) && rclcpp::ok(); ++i) {
      // Check if there is a cancel request
      if (goal_handle->is_canceling()) {
        result->sequence = sequence;
        goal_handle->canceled(result);
        RCLCPP_INFO(this->get_logger(), "Goal canceled");
        return;
      }
      // Update sequence
      sequence.push_back(sequence[i] + sequence[i - 1]);
      // Publish feedback
      goal_handle->publish_feedback(feedback);
      RCLCPP_INFO(this->get_logger(), "Publish feedback");

      loop_rate.sleep();
    }

    // Check if goal is done
    if (rclcpp::ok()) {
      result->sequence = sequence;
      goal_handle->succeed(result);
      RCLCPP_INFO(this->get_logger(), "Goal succeeded");
    }
  };

};  // class FibonacciActionServer

}  // namespace custom_action_cpp

RCLCPP_COMPONENTS_REGISTER_NODE(custom_action_cpp::FibonacciActionServer)

前几行包含了我们需要编译的所有头文件。

接下来我们创建一个“rclcpp::Node”的派生类:

class FibonacciActionServer : public rclcpp::Node

“FibonacciActionServer” 类的构造函数将节点名称初始化为“fibonacci_action_server”:

  explicit FibonacciActionServer(const rclcpp::NodeOptions & options = rclcpp::NodeOptions())
  : Node("fibonacci_action_server", options)

构造函数还实例化了一个新的动作服务器:

      loop_rate.sleep();
    }

    // Check if goal is done
    if (rclcpp::ok()) {

动作服务器需要 6 件事:

  1. 模板化动作类型名称:“Fibonacci”。

  2. 要将动作添加到的 ROS 2 节点:“this”。

  3. 动作名称:“’fibonacci’”。

  4. 用于处理目标的回调函数:“handle_goal”

  5. 用于处理取消的回调函数:“handle_cancel”。

  6. 用于处理目标接受的回调函数:“handle_accept”。

各种回调的实现都是通过构造函数中的 [lambda 表达式](https://en.cppreference.com/w/cpp/language/lambda) 完成的。

请注意,所有回调都需要快速返回,否则我们可能会让执行器陷入困境。

我们从处理新目标的回调开始:

    auto handle_goal = [this](
      const rclcpp_action::GoalUUID & uuid,
      std::shared_ptr<const Fibonacci::Goal> goal)
    {
      RCLCPP_INFO(this->get_logger(), "Received goal request with order %d", goal->order);
      (void)uuid;
      return rclcpp_action::GoalResponse::ACCEPT_AND_EXECUTE;
    };

此实现仅接受所有目标。

接下来是处理取消的回调:

    auto handle_cancel = [this](
      const std::shared_ptr<GoalHandleFibonacci> goal_handle)
    {
      RCLCPP_INFO(this->get_logger(), "Received request to cancel goal");
      (void)goal_handle;
      return rclcpp_action::CancelResponse::ACCEPT;
    };

此实现仅告知客户端它已接受取消。

最后一个回调接受新目标并开始处理它:

    auto handle_accepted = [this](
      const std::shared_ptr<GoalHandleFibonacci> goal_handle)
    {
      // this needs to return quickly to avoid blocking the executor,
      // so we declare a lambda function to be called inside a new thread
      auto execute_in_thread = [this, goal_handle](){return this->execute(goal_handle);};
      std::thread{execute_in_thread}.detach();
    };

由于执行是一项长时间运行的操作,我们生成一个线程来执行实际工作并快速从“handle_accepted”返回。

所有进一步的处理和更新都在新线程中的“execute”方法中完成:

  void execute(const std::shared_ptr<GoalHandleFibonacci> goal_handle) {
    RCLCPP_INFO(this->get_logger(), "Executing goal");
    rclcpp::Rate loop_rate(1);
    const auto goal = goal_handle->get_goal();
    auto feedback = std::make_shared<Fibonacci::Feedback>();
    auto & sequence = feedback->partial_sequence;
    sequence.push_back(0);
    sequence.push_back(1);
    auto result = std::make_shared<Fibonacci::Result>();

    for (int i = 1; (i < goal->order) && rclcpp::ok(); ++i) {
      // Check if there is a cancel request
      if (goal_handle->is_canceling()) {
        result->sequence = sequence;
        goal_handle->canceled(result);
        RCLCPP_INFO(this->get_logger(), "Goal canceled");
        return;
      }
      // Update sequence
      sequence.push_back(sequence[i] + sequence[i - 1]);
      // Publish feedback
      goal_handle->publish_feedback(feedback);
      RCLCPP_INFO(this->get_logger(), "Publish feedback");

      loop_rate.sleep();
    }

    // Check if goal is done
    if (rclcpp::ok()) {
      result->sequence = sequence;
      goal_handle->succeed(result);
      RCLCPP_INFO(this->get_logger(), "Goal succeeded");
    }
  };

此工作线程每秒处理一个斐波那契数列的序列号,并为每个步骤发布反馈更新。

处理完成后,它将 goal_handle 标记为成功,然后退出。

我们现在有一个功能齐全的操作服务器。让我们构建并运行它。

2.2 编译操作服务器

在上一节中,我们将操作服务器代码放到位。

为了使其编译和运行,我们需要做一些额外的事情。

首先,我们需要设置 CMakeLists.txt 以便编译操作服务器。

打开 custom_action_cpp/CMakeLists.txt,并在 find_package 调用后立即添加以下内容:

add_library(action_server SHARED
  src/fibonacci_action_server.cpp)
target_include_directories(action_server PRIVATE
  $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
  $<INSTALL_INTERFACE:include>)
target_compile_definitions(action_server
  PRIVATE "CUSTOM_ACTION_CPP_BUILDING_DLL")
ament_target_dependencies(action_server
  "custom_action_interfaces"
  "rclcpp"
  "rclcpp_action"
  "rclcpp_components")
rclcpp_components_register_node(action_server PLUGIN "custom_action_cpp::FibonacciActionServer" EXECUTABLE fibonacci_action_server)
install(TARGETS
  action_server
  ARCHIVE DESTINATION lib
  LIBRARY DESTINATION lib
  RUNTIME DESTINATION bin)

现在我们可以编译包了。转到“ros2_ws”的顶层,然后运行:

colcon build

这应该会编译整个工作区,包括“custom_action_cpp”包中的“fibonacci_action_server”。

2.3 运行动作服务器

现在我们已经构建了动作服务器,我们可以运行它了。 获取我们刚刚构建的工作区(“ros2_ws”),并尝试运行动作服务器:

ros2 run custom_action_cpp fibonacci_action_server

3 编写动作客户端

3.1 编写动作客户端代码

打开``custom_action_cpp/src/fibonacci_action_client.cpp``,输入以下代码:

#include <functional>
#include <future>
#include <memory>
#include <string>
#include <sstream>

#include "custom_action_interfaces/action/fibonacci.hpp"

#include "rclcpp/rclcpp.hpp"
#include "rclcpp_action/rclcpp_action.hpp"
#include "rclcpp_components/register_node_macro.hpp"

namespace custom_action_cpp
{
class FibonacciActionClient : public rclcpp::Node
{
public:
  using Fibonacci = custom_action_interfaces::action::Fibonacci;
  using GoalHandleFibonacci = rclcpp_action::ClientGoalHandle<Fibonacci>;

  explicit FibonacciActionClient(const rclcpp::NodeOptions & options)
  : Node("fibonacci_action_client", options)
  {
    this->client_ptr_ = rclcpp_action::create_client<Fibonacci>(
      this,
      "fibonacci");

    auto timer_callback_lambda = [this](){ return this->send_goal(); };
    this->timer_ = this->create_wall_timer(
      std::chrono::milliseconds(500),
      timer_callback_lambda);
  }

  void send_goal()
  {
    using namespace std::placeholders;

    this->timer_->cancel();

    if (!this->client_ptr_->wait_for_action_server()) {
      RCLCPP_ERROR(this->get_logger(), "Action server not available after waiting");
      rclcpp::shutdown();
    }

    auto goal_msg = Fibonacci::Goal();
    goal_msg.order = 10;

    RCLCPP_INFO(this->get_logger(), "Sending goal");

    auto send_goal_options = rclcpp_action::Client<Fibonacci>::SendGoalOptions();
    send_goal_options.goal_response_callback = [this](const GoalHandleFibonacci::SharedPtr & goal_handle)
    {
      if (!goal_handle) {
        RCLCPP_ERROR(this->get_logger(), "Goal was rejected by server");
      } else {
        RCLCPP_INFO(this->get_logger(), "Goal accepted by server, waiting for result");
      }
    };

    send_goal_options.feedback_callback = [this](
      GoalHandleFibonacci::SharedPtr,
      const std::shared_ptr<const Fibonacci::Feedback> feedback)
    {
      std::stringstream ss;
      ss << "Next number in sequence received: ";
      for (auto number : feedback->partial_sequence) {
        ss << number << " ";
      }
      RCLCPP_INFO(this->get_logger(), ss.str().c_str());
    };

    send_goal_options.result_callback = [this](const GoalHandleFibonacci::WrappedResult & result)
    {
      switch (result.code) {
        case rclcpp_action::ResultCode::SUCCEEDED:
          break;
        case rclcpp_action::ResultCode::ABORTED:
          RCLCPP_ERROR(this->get_logger(), "Goal was aborted");
          return;
        case rclcpp_action::ResultCode::CANCELED:
          RCLCPP_ERROR(this->get_logger(), "Goal was canceled");
          return;
        default:
          RCLCPP_ERROR(this->get_logger(), "Unknown result code");
          return;
      }
      std::stringstream ss;
      ss << "Result received: ";
      for (auto number : result.result->sequence) {
        ss << number << " ";
      }
      RCLCPP_INFO(this->get_logger(), ss.str().c_str());
      rclcpp::shutdown();
    };
    this->client_ptr_->async_send_goal(goal_msg, send_goal_options);
  }

private:
  rclcpp_action::Client<Fibonacci>::SharedPtr client_ptr_;
  rclcpp::TimerBase::SharedPtr timer_;
};  // class FibonacciActionClient

}  // namespace custom_action_cpp

RCLCPP_COMPONENTS_REGISTER_NODE(custom_action_cpp::FibonacciActionClient)

前几行包含了我们需要编译的所有头文件。

接下来我们创建一个“rclcpp::Node”的派生类:

class FibonacciActionClient : public rclcpp::Node

“FibonacciActionClient” 类的构造函数将节点名称初始化为“fibonacci_action_client”:

  explicit FibonacciActionClient(const rclcpp::NodeOptions & options)
  : Node("fibonacci_action_client", options)

构造函数还实例化了一个新的动作客户端:

    this->client_ptr_ = rclcpp_action::create_client<Fibonacci>(
      this,
      "fibonacci");

行动客户端需要三件事:

  1. 模板化动作类型名称:“Fibonacci”。

  2. 添加动作客户端的 ROS 2 节点:“this”。

  3. 动作名称:“’fibonacci’”。

我们还实例化了一个 ROS 计时器,它将启动对“send_goal”的唯一调用:

    auto timer_callback_lambda = [this](){ return this->send_goal(); };
    this->timer_ = this->create_wall_timer(
      std::chrono::milliseconds(500),
      timer_callback_lambda);

当计时器到期时,它会调用“send_goal”:

  void send_goal()
  {
    using namespace std::placeholders;

    this->timer_->cancel();

    if (!this->client_ptr_->wait_for_action_server()) {
      RCLCPP_ERROR(this->get_logger(), "Action server not available after waiting");
      rclcpp::shutdown();
    }

    auto goal_msg = Fibonacci::Goal();
    goal_msg.order = 10;

    RCLCPP_INFO(this->get_logger(), "Sending goal");

    auto send_goal_options = rclcpp_action::Client<Fibonacci>::SendGoalOptions();
    send_goal_options.goal_response_callback = [this](const GoalHandleFibonacci::SharedPtr & goal_handle)
    {
      if (!goal_handle) {
        RCLCPP_ERROR(this->get_logger(), "Goal was rejected by server");
      } else {
        RCLCPP_INFO(this->get_logger(), "Goal accepted by server, waiting for result");
      }
    };

    send_goal_options.feedback_callback = [this](
      GoalHandleFibonacci::SharedPtr,
      const std::shared_ptr<const Fibonacci::Feedback> feedback)
    {
      std::stringstream ss;
      ss << "Next number in sequence received: ";
      for (auto number : feedback->partial_sequence) {
        ss << number << " ";
      }
      RCLCPP_INFO(this->get_logger(), ss.str().c_str());
    };

    send_goal_options.result_callback = [this](const GoalHandleFibonacci::WrappedResult & result)
    {
      switch (result.code) {
        case rclcpp_action::ResultCode::SUCCEEDED:
          break;
        case rclcpp_action::ResultCode::ABORTED:
          RCLCPP_ERROR(this->get_logger(), "Goal was aborted");
          return;
        case rclcpp_action::ResultCode::CANCELED:
          RCLCPP_ERROR(this->get_logger(), "Goal was canceled");
          return;
        default:
          RCLCPP_ERROR(this->get_logger(), "Unknown result code");
          return;
      }
      std::stringstream ss;
      ss << "Result received: ";
      for (auto number : result.result->sequence) {
        ss << number << " ";
      }
      RCLCPP_INFO(this->get_logger(), ss.str().c_str());
      rclcpp::shutdown();
    };
    this->client_ptr_->async_send_goal(goal_msg, send_goal_options);
  }

此函数执行以下操作:

  1. 取消计时器(因此仅调用一次)。

  2. 等待操作服务器启动。

  3. 实例化新的 Fibonacci::Goal

  4. 设置响应、反馈和结果回调。

  5. 将目标发送到服务器。

当服务器收到并接受目标时,它将向客户端发送响应。 该响应由 goal_response_callback 处理:

    send_goal_options.goal_response_callback = [this](const GoalHandleFibonacci::SharedPtr & goal_handle)
    {
      if (!goal_handle) {
        RCLCPP_ERROR(this->get_logger(), "Goal was rejected by server");
      } else {
        RCLCPP_INFO(this->get_logger(), "Goal accepted by server, waiting for result");
      }
    };

假设目标被服务器接受,它将开始处理。 任何对客户端的反馈都将由“feedback_callback”处理:

    send_goal_options.feedback_callback = [this](
      GoalHandleFibonacci::SharedPtr,
      const std::shared_ptr<const Fibonacci::Feedback> feedback)
    {
      std::stringstream ss;
      ss << "Next number in sequence received: ";
      for (auto number : feedback->partial_sequence) {
        ss << number << " ";
      }
      RCLCPP_INFO(this->get_logger(), ss.str().c_str());
    };

当服务器完成处理后,它会将结果返回给客户端。 结果由“result_callback”处理:

    send_goal_options.result_callback = [this](const GoalHandleFibonacci::WrappedResult & result)
    {
      switch (result.code) {
        case rclcpp_action::ResultCode::SUCCEEDED:
          break;
        case rclcpp_action::ResultCode::ABORTED:
          RCLCPP_ERROR(this->get_logger(), "Goal was aborted");
          return;
        case rclcpp_action::ResultCode::CANCELED:
          RCLCPP_ERROR(this->get_logger(), "Goal was canceled");
          return;
        default:
          RCLCPP_ERROR(this->get_logger(), "Unknown result code");
          return;
      }
      std::stringstream ss;
      ss << "Result received: ";
      for (auto number : result.result->sequence) {
        ss << number << " ";
      }
      RCLCPP_INFO(this->get_logger(), ss.str().c_str());
      rclcpp::shutdown();
    };

我们现在有一个功能齐全的操作客户端。让我们构建并运行它。

3.2 编译操作客户端

在上一节中,我们将操作客户端代码放到位。 要使其编译和运行,我们需要做一些额外的事情。

首先,我们需要设置 CMakeLists.txt 以便编译操作客户端。 打开 custom_action_cpp/CMakeLists.txt,并在 find_package 调用后立即添加以下内容:

add_library(action_client SHARED
  src/fibonacci_action_client.cpp)
target_include_directories(action_client PRIVATE
  $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
  $<INSTALL_INTERFACE:include>)
target_compile_definitions(action_client
  PRIVATE "CUSTOM_ACTION_CPP_BUILDING_DLL")
ament_target_dependencies(action_client
  "custom_action_interfaces"
  "rclcpp"
  "rclcpp_action"
  "rclcpp_components")
rclcpp_components_register_node(action_client PLUGIN "custom_action_cpp::FibonacciActionClient" EXECUTABLE fibonacci_action_client)
install(TARGETS
  action_client
  ARCHIVE DESTINATION lib
  LIBRARY DESTINATION lib
  RUNTIME DESTINATION bin)

现在我们可以编译包了。转到“ros2_ws”的顶层,然后运行:

colcon build

这应该会编译整个工作区,包括“custom_action_cpp”包中的“fibonacci_action_client”。

3.3 运行操作客户端

现在我们已经构建了操作客户端,我们可以运行它了。 首先确保操作服务器在单独的终端中运行。 现在获取我们刚刚构建的工作区(“ros2_ws”),并尝试运行操作客户端:

ros2 run custom_action_cpp fibonacci_action_client

您应该会看到目标被接受、反馈被打印以及最终结果的记录消息。

摘要

在本教程中,您逐行组合了一个 C++ 操作服务器和操作客户端,并将它们配置为交换目标、反馈和结果。

相关内容

  • 有几种方法可以用 C++ 编写操作服务器和客户端;请查看 ros2/examples 存储库中的 minimal_action_serverminimal_action_client 包。

  • 有关 ROS 操作的更多详细信息,请参阅 设计文章