编写动作服务器和客户端 (C++)
目标:使用 C++ 实现动作服务器和客户端。
教程级别:中级
时间:15 分钟
背景
动作是 ROS 中的一种异步通信形式。 *动作客户端*向*动作服务器*发送目标请求。 *动作服务器*向*动作客户端*发送目标反馈和结果。
先决条件
您将需要``action_tutorials_interfaces``包和上一个教程中定义的``Fibonacci.action``接口,创建操作。
任务
1 创建 action_tutorials_cpp 包
正如我们在 创建包 教程中看到的,我们需要创建一个新包来保存我们的 C++ 和支持代码。
1.1 创建 action_tutorials_cpp 包
进入您在 上一个教程 中创建的操作工作区(记得获取工作区),并为 C++ 操作服务器创建一个新包:
cd ~/ros2_ws/src
ros2 pkg create --dependencies action_tutorials_interfaces rclcpp rclcpp_action rclcpp_components -- action_tutorials_cpp
cd ~/ros2_ws/src
ros2 pkg create --dependencies action_tutorials_interfaces rclcpp rclcpp_action rclcpp_components -- action_tutorials_cpp
cd \dev\ros2_ws\src
ros2 pkg create --dependencies action_tutorials_interfaces rclcpp rclcpp_action rclcpp_components -- action_tutorials_cpp
1.2 添加可见性控制
为了使包在 Windows 上编译和工作,我们需要添加一些“可见性控制”。 有关更多详细信息,请参阅:ref:Windows 提示和技巧文档 <Windows_Symbol_Visibility> 中的 Windows 符号可见性。
打开“action_tutorials_cpp/include/action_tutorials_cpp/visibility_control.h”,并输入以下代码:
#ifndef ACTION_TUTORIALS_CPP__VISIBILITY_CONTROL_H_
#define ACTION_TUTORIALS_CPP__VISIBILITY_CONTROL_H_
#ifdef __cplusplus
extern "C"
{
#endif
// This logic was borrowed (then namespaced) from the examples on the gcc wiki:
// https://gcc.gnu.org/wiki/Visibility
#if defined _WIN32 || defined __CYGWIN__
#ifdef __GNUC__
#define ACTION_TUTORIALS_CPP_EXPORT __attribute__ ((dllexport))
#define ACTION_TUTORIALS_CPP_IMPORT __attribute__ ((dllimport))
#else
#define ACTION_TUTORIALS_CPP_EXPORT __declspec(dllexport)
#define ACTION_TUTORIALS_CPP_IMPORT __declspec(dllimport)
#endif
#ifdef ACTION_TUTORIALS_CPP_BUILDING_DLL
#define ACTION_TUTORIALS_CPP_PUBLIC ACTION_TUTORIALS_CPP_EXPORT
#else
#define ACTION_TUTORIALS_CPP_PUBLIC ACTION_TUTORIALS_CPP_IMPORT
#endif
#define ACTION_TUTORIALS_CPP_PUBLIC_TYPE ACTION_TUTORIALS_CPP_PUBLIC
#define ACTION_TUTORIALS_CPP_LOCAL
#else
#define ACTION_TUTORIALS_CPP_EXPORT __attribute__ ((visibility("default")))
#define ACTION_TUTORIALS_CPP_IMPORT
#if __GNUC__ >= 4
#define ACTION_TUTORIALS_CPP_PUBLIC __attribute__ ((visibility("default")))
#define ACTION_TUTORIALS_CPP_LOCAL __attribute__ ((visibility("hidden")))
#else
#define ACTION_TUTORIALS_CPP_PUBLIC
#define ACTION_TUTORIALS_CPP_LOCAL
#endif
#define ACTION_TUTORIALS_CPP_PUBLIC_TYPE
#endif
#ifdef __cplusplus
}
#endif
#endif // ACTION_TUTORIALS_CPP__VISIBILITY_CONTROL_H_
2 编写动作服务器
让我们专注于编写一个动作服务器,使用我们在 创建操作 教程中创建的动作来计算斐波那契数列。
2.1 编写动作服务器代码
打开“action_tutorials_cpp/src/fibonacci_action_server.cpp”,并输入以下代码:
#include <functional>
#include <memory>
#include <thread>
#include "action_tutorials_interfaces/action/fibonacci.hpp"
#include "rclcpp/rclcpp.hpp"
#include "rclcpp_action/rclcpp_action.hpp"
#include "rclcpp_components/register_node_macro.hpp"
#include "action_tutorials_cpp/visibility_control.h"
namespace action_tutorials_cpp
{
class FibonacciActionServer : public rclcpp::Node
{
public:
using Fibonacci = action_tutorials_interfaces::action::Fibonacci;
using GoalHandleFibonacci = rclcpp_action::ServerGoalHandle<Fibonacci>;
ACTION_TUTORIALS_CPP_PUBLIC
explicit FibonacciActionServer(const rclcpp::NodeOptions & options = rclcpp::NodeOptions())
: Node("fibonacci_action_server", options)
{
using namespace std::placeholders;
this->action_server_ = rclcpp_action::create_server<Fibonacci>(
this,
"fibonacci",
std::bind(&FibonacciActionServer::handle_goal, this, _1, _2),
std::bind(&FibonacciActionServer::handle_cancel, this, _1),
std::bind(&FibonacciActionServer::handle_accepted, this, _1));
}
private:
rclcpp_action::Server<Fibonacci>::SharedPtr action_server_;
rclcpp_action::GoalResponse handle_goal(
const rclcpp_action::GoalUUID & uuid,
std::shared_ptr<const Fibonacci::Goal> goal)
{
RCLCPP_INFO(this->get_logger(), "Received goal request with order %d", goal->order);
(void)uuid;
return rclcpp_action::GoalResponse::ACCEPT_AND_EXECUTE;
}
rclcpp_action::CancelResponse handle_cancel(
const std::shared_ptr<GoalHandleFibonacci> goal_handle)
{
RCLCPP_INFO(this->get_logger(), "Received request to cancel goal");
(void)goal_handle;
return rclcpp_action::CancelResponse::ACCEPT;
}
void handle_accepted(const std::shared_ptr<GoalHandleFibonacci> goal_handle)
{
using namespace std::placeholders;
// this needs to return quickly to avoid blocking the executor, so spin up a new thread
std::thread{std::bind(&FibonacciActionServer::execute, this, _1), goal_handle}.detach();
}
void execute(const std::shared_ptr<GoalHandleFibonacci> goal_handle)
{
RCLCPP_INFO(this->get_logger(), "Executing goal");
rclcpp::Rate loop_rate(1);
const auto goal = goal_handle->get_goal();
auto feedback = std::make_shared<Fibonacci::Feedback>();
auto & sequence = feedback->partial_sequence;
sequence.push_back(0);
sequence.push_back(1);
auto result = std::make_shared<Fibonacci::Result>();
for (int i = 1; (i < goal->order) && rclcpp::ok(); ++i) {
// Check if there is a cancel request
if (goal_handle->is_canceling()) {
result->sequence = sequence;
goal_handle->canceled(result);
RCLCPP_INFO(this->get_logger(), "Goal canceled");
return;
}
// Update sequence
sequence.push_back(sequence[i] + sequence[i - 1]);
// Publish feedback
goal_handle->publish_feedback(feedback);
RCLCPP_INFO(this->get_logger(), "Publish feedback");
loop_rate.sleep();
}
// Check if goal is done
if (rclcpp::ok()) {
result->sequence = sequence;
goal_handle->succeed(result);
RCLCPP_INFO(this->get_logger(), "Goal succeeded");
}
}
}; // class FibonacciActionServer
} // namespace action_tutorials_cpp
RCLCPP_COMPONENTS_REGISTER_NODE(action_tutorials_cpp::FibonacciActionServer)
前几行包含了我们需要编译的所有头文件。
接下来我们创建一个“rclcpp::Node”的派生类:
class FibonacciActionServer : public rclcpp::Node
“FibonacciActionServer” 类的构造函数将节点名称初始化为“fibonacci_action_server”:
explicit FibonacciActionServer(const rclcpp::NodeOptions & options = rclcpp::NodeOptions())
: Node("fibonacci_action_server", options)
构造函数还实例化了一个新的动作服务器:
this->action_server_ = rclcpp_action::create_server<Fibonacci>(
this,
"fibonacci",
std::bind(&FibonacciActionServer::handle_goal, this, _1, _2),
std::bind(&FibonacciActionServer::handle_cancel, this, _1),
std::bind(&FibonacciActionServer::handle_accepted, this, _1));
动作服务器需要 6 件事:
模板化动作类型名称:“Fibonacci”。
要将动作添加到的 ROS 2 节点:“this”。
动作名称:“’fibonacci’”。
用于处理目标的回调函数:“handle_goal”
用于处理取消的回调函数:“handle_cancel”。
用于处理目标接受的回调函数:“handle_accept”。
文件中接下来是各种回调的实现。
请注意,所有回调都需要快速返回,否则我们可能会让执行器陷入困境。
我们从处理新目标的回调开始:
rclcpp_action::GoalResponse handle_goal(
const rclcpp_action::GoalUUID & uuid,
std::shared_ptr<const Fibonacci::Goal> goal)
{
RCLCPP_INFO(this->get_logger(), "Received goal request with order %d", goal->order);
(void)uuid;
return rclcpp_action::GoalResponse::ACCEPT_AND_EXECUTE;
}
此实现仅接受所有目标。
接下来是处理取消的回调:
rclcpp_action::CancelResponse handle_cancel(
const std::shared_ptr<GoalHandleFibonacci> goal_handle)
{
RCLCPP_INFO(this->get_logger(), "Received request to cancel goal");
(void)goal_handle;
return rclcpp_action::CancelResponse::ACCEPT;
}
此实现仅告知客户端它已接受取消。
最后一个回调接受新目标并开始处理它:
void handle_accepted(const std::shared_ptr<GoalHandleFibonacci> goal_handle)
{
using namespace std::placeholders;
// this needs to return quickly to avoid blocking the executor, so spin up a new thread
std::thread{std::bind(&FibonacciActionServer::execute, this, _1), goal_handle}.detach();
}
由于执行是一项长时间运行的操作,我们生成一个线程来完成实际工作,并快速从“handle_accepted”返回。
所有进一步的处理和更新都在新线程中的“execute”方法中完成:
void execute(const std::shared_ptr<GoalHandleFibonacci> goal_handle)
{
RCLCPP_INFO(this->get_logger(), "Executing goal");
rclcpp::Rate loop_rate(1);
const auto goal = goal_handle->get_goal();
auto feedback = std::make_shared<Fibonacci::Feedback>();
auto & sequence = feedback->partial_sequence;
sequence.push_back(0);
sequence.push_back(1);
auto result = std::make_shared<Fibonacci::Result>();
for (int i = 1; (i < goal->order) && rclcpp::ok(); ++i) {
// Check if there is a cancel request
if (goal_handle->is_canceling()) {
result->sequence = sequence;
goal_handle->canceled(result);
RCLCPP_INFO(this->get_logger(), "Goal canceled");
return;
}
// Update sequence
sequence.push_back(sequence[i] + sequence[i - 1]);
// Publish feedback
goal_handle->publish_feedback(feedback);
RCLCPP_INFO(this->get_logger(), "Publish feedback");
loop_rate.sleep();
}
// Check if goal is done
if (rclcpp::ok()) {
result->sequence = sequence;
goal_handle->succeed(result);
RCLCPP_INFO(this->get_logger(), "Goal succeeded");
}
}
此工作线程每秒处理一个斐波那契数列的序列号,并为每个步骤发布反馈更新。
处理完成后,它将 goal_handle
标记为成功,然后退出。
我们现在有一个功能齐全的操作服务器。让我们构建并运行它。
2.2 编译操作服务器
在上一节中,我们将操作服务器代码放到位。
为了使其编译和运行,我们需要做一些额外的事情。
首先,我们需要设置 CMakeLists.txt 以便编译操作服务器。
打开 action_tutorials_cpp/CMakeLists.txt
,并在 find_package
调用后立即添加以下内容:
add_library(action_server SHARED
src/fibonacci_action_server.cpp)
target_include_directories(action_server PRIVATE
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:include>)
target_compile_definitions(action_server
PRIVATE "ACTION_TUTORIALS_CPP_BUILDING_DLL")
ament_target_dependencies(action_server
"action_tutorials_interfaces"
"rclcpp"
"rclcpp_action"
"rclcpp_components")
rclcpp_components_register_node(action_server PLUGIN "action_tutorials_cpp::FibonacciActionServer" EXECUTABLE fibonacci_action_server)
install(TARGETS
action_server
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
RUNTIME DESTINATION bin)
现在我们可以编译包了。转到“ros2_ws”的顶层,然后运行:
colcon build
这应该会编译整个工作区,包括“action_tutorials_cpp”包中的“fibonacci_action_server”。
2.3 运行动作服务器
现在我们已经构建了动作服务器,我们可以运行它了。 获取我们刚刚构建的工作区(“ros2_ws”),并尝试运行动作服务器:
ros2 run action_tutorials_cpp fibonacci_action_server
3 编写动作客户端
3.1 编写动作客户端代码
打开``action_tutorials_cpp/src/fibonacci_action_client.cpp``,并输入以下代码:
#include <functional>
#include <future>
#include <memory>
#include <string>
#include <sstream>
#include "action_tutorials_interfaces/action/fibonacci.hpp"
#include "rclcpp/rclcpp.hpp"
#include "rclcpp_action/rclcpp_action.hpp"
#include "rclcpp_components/register_node_macro.hpp"
namespace action_tutorials_cpp
{
class FibonacciActionClient : public rclcpp::Node
{
public:
using Fibonacci = action_tutorials_interfaces::action::Fibonacci;
using GoalHandleFibonacci = rclcpp_action::ClientGoalHandle<Fibonacci>;
explicit FibonacciActionClient(const rclcpp::NodeOptions & options)
: Node("fibonacci_action_client", options)
{
this->client_ptr_ = rclcpp_action::create_client<Fibonacci>(
this,
"fibonacci");
this->timer_ = this->create_wall_timer(
std::chrono::milliseconds(500),
std::bind(&FibonacciActionClient::send_goal, this));
}
void send_goal()
{
using namespace std::placeholders;
this->timer_->cancel();
if (!this->client_ptr_->wait_for_action_server()) {
RCLCPP_ERROR(this->get_logger(), "Action server not available after waiting");
rclcpp::shutdown();
}
auto goal_msg = Fibonacci::Goal();
goal_msg.order = 10;
RCLCPP_INFO(this->get_logger(), "Sending goal");
auto send_goal_options = rclcpp_action::Client<Fibonacci>::SendGoalOptions();
send_goal_options.goal_response_callback =
std::bind(&FibonacciActionClient::goal_response_callback, this, _1);
send_goal_options.feedback_callback =
std::bind(&FibonacciActionClient::feedback_callback, this, _1, _2);
send_goal_options.result_callback =
std::bind(&FibonacciActionClient::result_callback, this, _1);
this->client_ptr_->async_send_goal(goal_msg, send_goal_options);
}
private:
rclcpp_action::Client<Fibonacci>::SharedPtr client_ptr_;
rclcpp::TimerBase::SharedPtr timer_;
void goal_response_callback(const GoalHandleFibonacci::SharedPtr & goal_handle)
{
if (!goal_handle) {
RCLCPP_ERROR(this->get_logger(), "Goal was rejected by server");
} else {
RCLCPP_INFO(this->get_logger(), "Goal accepted by server, waiting for result");
}
}
void feedback_callback(
GoalHandleFibonacci::SharedPtr,
const std::shared_ptr<const Fibonacci::Feedback> feedback)
{
std::stringstream ss;
ss << "Next number in sequence received: ";
for (auto number : feedback->partial_sequence) {
ss << number << " ";
}
RCLCPP_INFO(this->get_logger(), ss.str().c_str());
}
void result_callback(const GoalHandleFibonacci::WrappedResult & result)
{
switch (result.code) {
case rclcpp_action::ResultCode::SUCCEEDED:
break;
case rclcpp_action::ResultCode::ABORTED:
RCLCPP_ERROR(this->get_logger(), "Goal was aborted");
return;
case rclcpp_action::ResultCode::CANCELED:
RCLCPP_ERROR(this->get_logger(), "Goal was canceled");
return;
default:
RCLCPP_ERROR(this->get_logger(), "Unknown result code");
return;
}
std::stringstream ss;
ss << "Result received: ";
for (auto number : result.result->sequence) {
ss << number << " ";
}
RCLCPP_INFO(this->get_logger(), ss.str().c_str());
rclcpp::shutdown();
}
}; // class FibonacciActionClient
} // namespace action_tutorials_cpp
RCLCPP_COMPONENTS_REGISTER_NODE(action_tutorials_cpp::FibonacciActionClient)
前几行包含了我们需要编译的所有头文件。
接下来我们创建一个“rclcpp::Node”的派生类:
class FibonacciActionClient : public rclcpp::Node
“FibonacciActionClient” 类的构造函数将节点名称初始化为“fibonacci_action_client”:
explicit FibonacciActionClient(const rclcpp::NodeOptions & options)
: Node("fibonacci_action_client", options)
构造函数还实例化了一个新的动作客户端:
this->client_ptr_ = rclcpp_action::create_client<Fibonacci>(
this,
"fibonacci");
动作客户端需要 3 件事:
模板化动作类型名称:“Fibonacci”。
要将动作客户端添加到的 ROS 2 节点:“this”。
动作名称:“’fibonacci’”。
我们还实例化了一个 ROS 计时器,它将启动对“send_goal”的唯一调用:
this->timer_ = this->create_wall_timer(
std::chrono::milliseconds(500),
std::bind(&FibonacciActionClient::send_goal, this));
当计时器到期时,它会调用“send_goal”:
void send_goal()
{
using namespace std::placeholders;
this->timer_->cancel();
if (!this->client_ptr_->wait_for_action_server()) {
RCLCPP_ERROR(this->get_logger(), "Action server not available after waiting");
rclcpp::shutdown();
}
auto goal_msg = Fibonacci::Goal();
goal_msg.order = 10;
RCLCPP_INFO(this->get_logger(), "Sending goal");
auto send_goal_options = rclcpp_action::Client<Fibonacci>::SendGoalOptions();
send_goal_options.goal_response_callback =
std::bind(&FibonacciActionClient::goal_response_callback, this, _1);
send_goal_options.feedback_callback =
std::bind(&FibonacciActionClient::feedback_callback, this, _1, _2);
send_goal_options.result_callback =
std::bind(&FibonacciActionClient::result_callback, this, _1);
this->client_ptr_->async_send_goal(goal_msg, send_goal_options);
}
此函数执行以下操作:
取消计时器(因此仅调用一次)。
等待操作服务器启动。
实例化新的
Fibonacci::Goal
。设置响应、反馈和结果回调。
将目标发送到服务器。
当服务器收到并接受目标时,它将向客户端发送响应。
该响应由 goal_response_callback
处理:
void goal_response_callback(const GoalHandleFibonacci::SharedPtr & goal_handle)
{
if (!goal_handle) {
RCLCPP_ERROR(this->get_logger(), "Goal was rejected by server");
} else {
RCLCPP_INFO(this->get_logger(), "Goal accepted by server, waiting for result");
}
}
假设目标被服务器接受,它将开始处理。 任何对客户端的反馈都将由“feedback_callback”处理:
void feedback_callback(
GoalHandleFibonacci::SharedPtr,
const std::shared_ptr<const Fibonacci::Feedback> feedback)
{
std::stringstream ss;
ss << "Next number in sequence received: ";
for (auto number : feedback->partial_sequence) {
ss << number << " ";
}
RCLCPP_INFO(this->get_logger(), ss.str().c_str());
}
当服务器完成处理后,它会将结果返回给客户端。 结果由“result_callback”处理:
void result_callback(const GoalHandleFibonacci::WrappedResult & result)
{
switch (result.code) {
case rclcpp_action::ResultCode::SUCCEEDED:
break;
case rclcpp_action::ResultCode::ABORTED:
RCLCPP_ERROR(this->get_logger(), "Goal was aborted");
return;
case rclcpp_action::ResultCode::CANCELED:
RCLCPP_ERROR(this->get_logger(), "Goal was canceled");
return;
default:
RCLCPP_ERROR(this->get_logger(), "Unknown result code");
return;
}
std::stringstream ss;
ss << "Result received: ";
for (auto number : result.result->sequence) {
ss << number << " ";
}
RCLCPP_INFO(this->get_logger(), ss.str().c_str());
rclcpp::shutdown();
}
}; // class FibonacciActionClient
我们现在有一个功能齐全的操作客户端。让我们构建并运行它。
3.2 编译操作客户端
在上一节中,我们将操作客户端代码放到位。 要使其编译和运行,我们需要做一些额外的事情。
首先,我们需要设置 CMakeLists.txt 以便编译操作客户端。 打开“action_tutorials_cpp/CMakeLists.txt”,并在“find_package”调用后立即添加以下内容:
add_library(action_client SHARED
src/fibonacci_action_client.cpp)
target_include_directories(action_client PRIVATE
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:include>)
target_compile_definitions(action_client
PRIVATE "ACTION_TUTORIALS_CPP_BUILDING_DLL")
ament_target_dependencies(action_client
"action_tutorials_interfaces"
"rclcpp"
"rclcpp_action"
"rclcpp_components")
rclcpp_components_register_node(action_client PLUGIN "action_tutorials_cpp::FibonacciActionClient" EXECUTABLE fibonacci_action_client)
install(TARGETS
action_client
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
RUNTIME DESTINATION bin)
现在我们可以编译包了。转到“ros2_ws”的顶层,然后运行:
colcon build
这应该会编译整个工作区,包括“action_tutorials_cpp”包中的“fibonacci_action_client”。
3.3 运行操作客户端
现在我们已经构建了操作客户端,我们可以运行它了。 首先确保操作服务器在单独的终端中运行。 现在获取我们刚刚构建的工作区(“ros2_ws”),并尝试运行操作客户端:
ros2 run action_tutorials_cpp fibonacci_action_client
您应该会看到目标被接受、反馈被打印以及最终结果的记录消息。
摘要
在本教程中,您逐行组合了一个 C++ 操作服务器和操作客户端,并将它们配置为交换目标、反馈和结果。
相关内容
有几种方法可以用 C++ 编写操作服务器和客户端;请查看 ros2/examples 存储库中的
minimal_action_server
和minimal_action_client
包。有关 ROS 操作的更多详细信息,请参阅 设计文章。