macOS (source)

System requirements

We currently support macOS Mojave (10.14).

Install prerequisites

You need the following things installed to build ROS 2:

  1. Xcode

    • If you don’t already have it installed, install [Xcode](https://apps.apple.com/app/xcode/id497799835).

    • Note: Versions of Xcode later than 11.3.1 can no longer be installed on macOS Mojave, so you will need to install an older version manually, see: https://stackoverflow.com/a/61046761

    • Also, if you don’t already have it installed, install the Command Line Tools:

      xcode-select --install
      # This command will not succeed if you have not installed Xcode.app
      sudo xcode-select --switch /Applications/Xcode.app/Contents/Developer
      # If you installed Xcode.app manually, you need to either open it or run:
      sudo xcodebuild -license
      # To accept the Xcode.app license
      
  2. brew (needed to install more stuff; you probably already have this):

    • Follow installation instructions at http://brew.sh/

    • Optional: Check that brew is happy with your system configuration by running:

      brew doctor
      

      Fix any problems that it identifies.

  3. Use brew to install more stuff:

    brew install asio assimp bison bullet cmake console_bridge cppcheck \
      cunit eigen freetype graphviz opencv openssl orocos-kdl pcre poco \
      pyqt@5 python qt@5 sip spdlog osrf/simulation/tinyxml1 tinyxml2
    
  4. Setup some environment variables:

    # Add the openssl dir for DDS-Security
    # if you are using BASH, then replace '.zshrc' with '.bashrc'
    echo "export OPENSSL_ROOT_DIR=$(brew --prefix openssl)" >> ~/.zshrc
    
    # Add the Qt directory to the PATH and CMAKE_PREFIX_PATH
    export CMAKE_PREFIX_PATH=$CMAKE_PREFIX_PATH:$(brew --prefix qt@5)
    export PATH=$PATH:$(brew --prefix qt@5)/bin
    
  5. Use python3 -m pip (just pip may install Python3 or Python2) to install more stuff:

    python3 -m pip install --upgrade pip
    
    python3 -m pip install -U \
      --config-settings="--global-option=build_ext" \
      --config-settings="--global-option=-I$(brew --prefix graphviz)/include/" \
      --config-settings="--global-option=-L$(brew --prefix graphviz)/lib/" \
      argcomplete catkin_pkg colcon-common-extensions coverage \
      cryptography empy flake8 flake8-blind-except==0.1.1 flake8-builtins \
      flake8-class-newline flake8-comprehensions flake8-deprecated \
      flake8-docstrings flake8-import-order flake8-quotes \
      importlib-metadata lark==1.1.1 lxml matplotlib mock mypy==0.931 netifaces \
      nose pep8 psutil pydocstyle pydot pygraphviz pyparsing==2.4.7 \
      pytest-mock rosdep rosdistro setuptools==59.6.0 vcstool
    

    Please ensure that the $PATH environment variable contains the install location of the binaries ($(brew --prefix)/bin)

  6. Optional: if you want to build the ROS 1<->2 bridge, then you must also install ROS 1:

    • Start with the normal install instructions: http://wiki.ros.org/kinetic/Installation/OSX/Homebrew/Source

    • When you get to the step where you call rosinstall_generator to get the source code, here’s an alternate invocation that brings in just the minimum required to produce a useful bridge:

      rosinstall_generator catkin common_msgs roscpp rosmsg --rosdistro kinetic --deps --wet-only --tar > kinetic-ros2-bridge-deps.rosinstall
      wstool init -j8 src kinetic-ros2-bridge-deps.rosinstall
      

      Otherwise, just follow the normal instructions, then source the resulting install_isolated/setup.bash before proceeding here to build ROS 2.

Disable System Integrity Protection (SIP)

macOS/OS X versions >=10.11 have System Integrity Protection enabled by default. So that SIP doesn’t prevent processes from inheriting dynamic linker environment variables, such as DYLD_LIBRARY_PATH, you’ll need to disable it following these instructions.

Get the ROS 2 code

Create a workspace and clone all repos:

mkdir -p ~/ros2_rolling/src
cd ~/ros2_rolling
vcs import --input https://raw.githubusercontent.com/ros2/ros2/rolling/ros2.repos src

Install additional DDS vendors (optional)

If you would like to use another DDS or RTPS vendor besides the default, you can find instructions here.

Build the ROS 2 code

Run the colcon tool to build everything (more on using colcon in this tutorial):

cd ~/ros2_rolling/
colcon build --symlink-install --packages-skip-by-dep python_qt_binding

Note: due to an unresolved issue with SIP, Qt@5, and PyQt5, we need to disable python_qt_binding to have the build succeed. This will be removed when the issue is resolved, see: https://github.com/ros-visualization/python_qt_binding/issues/103

Environment setup

Source the ROS 2 setup file:

. ~/ros2_rolling/install/setup.zsh

This will automatically set up the environment for any DDS vendors that support was built for.

Try some examples

In one terminal, set up the ROS 2 environment as described above and then run a C++ talker:

ros2 run demo_nodes_cpp talker

In another terminal source the setup file and then run a Python listener:

ros2 run demo_nodes_py listener

You should see the talker saying that it’s Publishing messages and the listener saying I heard those messages. This verifies both the C++ and Python APIs are working properly. Hooray!

Next steps after installing

Continue with the tutorials and demos to configure your environment, create your own workspace and packages, and learn ROS 2 core concepts.

Using the ROS 1 bridge

The ROS 1 bridge can connect topics from ROS 1 to ROS 2 and vice-versa. See the dedicated documentation on how to build and use the ROS 1 bridge.

Additional RMW implementations (optional)

The default middleware that ROS 2 uses is Fast DDS, but the middleware (RMW) can be replaced at runtime. See the guide on how to work with multiple RMWs.

Stay up to date

See Maintain source checkout to periodically refresh your source installation.

Troubleshooting

Troubleshooting techniques can be found here.

Uninstall

  1. If you installed your workspace with colcon as instructed above, “uninstalling” could be just a matter of opening a new terminal and not sourcing the workspace’s setup file. This way, your environment will behave as though there is no Rolling install on your system.

  2. If you’re also trying to free up space, you can delete the entire workspace directory with:

    rm -rf ~/ros2_rolling